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Abstract. Simulation of low velocity impact on structures or high velocity penetration in armor 
materials heavily rely on constitutive material models. Model constants are determined from tension, 
compression or torsion stress-strain at low and high strain rates at different temperatures. These model 
constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate 
fragment impact on structural components made of high strength 7075-T651aluminum alloy.  Johnson-
Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the 
penetration into 1" thick Al-7075-T651plates. When simulation go well beyond minor parameter 
tweaking and experimental results show drastically different behavior it becomes important to 
determine constitutive parameters from the actual material used in impact/penetration experiments. To 
investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate 
tensile tests were performed on specimens fabricated in the longitudinal “L”, transverse “T”, and 
thickness “TH” directions of 1" thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as 
~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow 
stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain 
data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1" thick plate 
are used to derive fracture constants.  
Keywords: Aluminum, projectile impact simulation, strain rate sensitivity, Johnson-Cook, constitutive 
model.  
PACS: 62.20 .Dc, 62.20..Fe, S 62.50. +p, 83.60.La 

 
INTRODUCTION 

Aluminum 7075 alloys are candidate materials 
for cold formable shapes that act as containment 
for ordnance applications. Over the last few years, 
a number of alloys have been characterized to 
determine their suitability for impact mitigation of 
different types of ordinance explosions. The studies 
involve numerical simulations of structures to 
impact scenarios. In order to simulate projectile 
(fragment) impact on structural components made 
of thick Al7075-T651 plates, accurate constitutive 
model constants determined from tests performed 
on test specimens fabricated from the actual 

material under investigated are required as input 
for computer codes (DYNA3D). Recent studies on 
a number of alloys (e.g., Mg-AZ31B-O) suggest 
that material response is highly anisotropic [1]. 
Yield and flow stress in rolling (L), transverse to 
rolling (T), and thickness (TH) directions is 
significantly different. The objective of the present 
research is to compare modeling parameters for 
thick plate with the published parameters derived 
from round bar stock material of Al7075-T651. 
The current focus is to study the property 
differences in the L, T, and TH directions at high 
strain rate and temperature and infer their influence 
in deriving constitutive model parameters.   
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EXPERIMENTAL METHOD 
Materials and Specimen Specifications 

Tension specimens in the sub-size ASTM E8 
configuration were fabricated in L, T, TH 
directions from 1-inch thick Al7075-T651 Plate. 
Sample dimensions from plates were identical to 
those prepared from bar stock, except in the 
thickness direction, since the plate thickness was 
smaller than the original sample length. This was 
achieved by maintaining the gage length and 
reducing the threaded section.  

Quasi-Static Strain Rate Test Technique 

Quasi-static (~1/s) tests were performed at 
ambient conditions on a MTS Servo hydraulic 
machine equipped with an 11 kip actuator. Load 
was measured with a load cell calibrated over an 
appropriate range. A slack adapter allowed the 
actuator to attain test speed before applying load to 
the specimen. Strain was measured using back-to-
back strain gauges bonded on the specimen Post-
yield strain was measured using a lightweight 
mechanical extensometer.  

Tension split Hopkinson Bar Technique 

The schematic of the Tension Split Hopkinson 
Bar at the University of Dayton Research Institute 
is shown in Fig. 1. The apparatus consists of a 
striker bar and two pressure bars, 0.5 in. (12.7 mm) 
in diameter and made of Inconel 718. The striker 
bar is launched in a compressed air gun. It strikes 
the incident bar end to end and produces a 
compressive stress pulse in incident bar. The 
tensile specimen is placed into the threaded holes 
in the two pressure bars. A collar is inserted around 
the specimen and the specimen is tightened in until 
the pressure bars are snug against the collar. The 
stress wave generated by the impact of the striker 
bar on incident bar is transmitted through the collar 
into the transmitter bar without affecting the 
specimen. It reflects back from the free end of the 
transmitting bar as a tensile wave and subjects the 
specimen to a tensile pulse. A part of the incident 
(tensile) pulse, εi, is transmitted through the 
specimen εt and the rest is reflected back through 
the incident bar εr.Incident, reflected, and 
transmitted are analyzed following the procedure 
described by Nicholas [2].  

Striker bar Incident bar Transmitter bar

0.76 m 2.74 m 0.91 m 0.91 m 0.91 m

Transmitter barIncident bar

Sample 

Collar

Figure 1. Schematic of the Tension Split Hopkinson Bar. 

RESULTS AND DISCUSSION  

Typical quasi-static tension stress-strain data 
for Al7075-T651 specimens fabricated from a 3/8" 
diameter bar stock and 1" thick plate at a strain rate 
of ~1/s are shown in Fig. 2. Since the yield stress 
for bar stock and plate specimens in “L”, “T”, and 
“TH” are similar, the constant “A” for Johnson-
cook material strength model [3] for bar or plate is 
not expected to be significantly different. 
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Figure 2. Tension data from 3/8" diameter bar stock and 

three directions from 1” thick plate.  
  

     High strain rate (~1000/s) tension data 
measured at ambient temperature in “L”, “T”, and 
“TH” orientation is shown in Fig. 3. Differences in 
the flow stress of “T”, and “TH” specimen 
compared to “L” are observed, but the difference in 
the failure strain is pronounced. This observation 
leads us to believe that the model constants “B”, 
“n” and “C” may need re-evaluation, but are 
beyond the scope of current work. 
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Figure 3. High strain rate data at 22o C. 

 
High strain rate data on specimens in “L”, “T”, 

and “TH” orientation at 160o C and 250o C are 
shown in Figs. 4 and Fig. 5 respectively. The data 
show a similar trend as observed at room 
temperature, but is very pronounced. These 
differences reflect varying temperature constant in 
the three orientations and needed evaluation 
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Figure 4. High strain rate data at 160o C. 

 
The model constant “m”, derived from the 

slope of normalized stress vs. homologous 
temperature, as plotted in Fig. 6 for three 
orientation reflects the deviation from model 
constant derived from bar stock. Variation of 
values from 1.23 to 1.71 represents the range of 
values in the strength modeling constant “m”.  
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Figure 5. High strain rate data at 250o C. 
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Figure 6. Normalized Flow stress vs. Temperature data. 

 
Effect of Specimen orientation on  

J-C Fracture (Damage) Model Constants 

 Fracture model is Fracture model is defined as 

[ ][ ] ⎥⎦
⎤

⎢⎣
⎡ ++= ** T1 lnD1 D+Dε 5421f

*
3 DeD εσ  

where εf is the equivalent plastic fracture strain, σ* 
is the stress triaxility factor (STR), and D1, D2, D3, 
D4, and D5 are fracture model constants [3]. 
Constants D1, D2, and D3 were determined by 
performing room temperature tension tests at a 
strain rate of ~1/s on un-notched (smooth), ASTM 
E8 specimens, (STR = 1/3), and notched specimens 
(notch radii, 0.4-mm, 0.8-mm, 2.0-mm) to vary 
STR (= 1/3 + ln(1 + ao/2Ro)), where  ao and Ro are 
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the original specimen radius at the notch center and 
notch radius, respectively [4]. Equivalent fracture 
strain at failure, εf, is determined as 

εf = Ln (Ao/Af) 
where Ao and Af are the specimen cross-section 
area before and after the test respectively. 
Specimen fracture areas were measured using 
traveling microscope. Data on εf and STR for the 
bar and plate specimens are plotted in Figs. 7 and 
Fig. 8 to determine constants D1, D2, and D3 using 
Levenberg-Marquardt optimization method [5] 
from software iterative program on fracture model 
equation above. 
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Figure 7. J-C Fracture Model Constants D1, D2, and D3 
for bar specimens of Al7075-T651. 
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Figure 8 J-C Fracture Model Constants D1, D2, and D3 
for plate specimens of Al7075-T651. 

      Values of constants D1, D2, and D3 evaluated 
for bar and plate specimens are summarized in 
Table 1. 

Table 1. J-C fracture model constants for Al7075-T651 
bar and plate specimens. 

Constant          Bar      Plate 
D1     0.110    -0.047 
D2     0.572     0.204 
D3         -3.446    -1.007 

 
CONCLUSIONS 

 
(1) High strain rate as well as high temperature 
yield and flow stress (ε = 0.5) data in “L”, “T”, and 
“TH” orientations of 1” thick Al7075-T651 plate 
are significantly anisotropic. 
 
(2) Observed anisotropy suggest that there are no 
unique values for constitutive (Johnson-Cook) 
model constants; rather a range of values which are 
optimized for simulating an impact event.   
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